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Two-dimensional convection from heated wires 
at low Reynolds numbers 

By D. C.  COLLIS AND M. J. WILLIAMS 
Aeronautical Research Laboratories. Australian Defence Scientific Service 

(Received 16 July 195s and in revised form 21 March 1959) 

Measurements of heat transfer from circular wires placed normal to a horizontal 
airstream have been made in the Reynolds number range 0.01 to 140. The 
Nusselt number can be related to the Reynolds number and temperature loading 
by an expression of the form 

where the values of n, A and B (see table 3) depend on whether the Reynolds 
number is above or below the value for which a vortex street exists in the wake 
of the wire. This value of the Reynolds number (R = 44) is independent of the 
intensity and scale of the stream turbulence. The theoretical heat transfer 
relation based on the Oseen approximation is approached asymptotically as 
R --f 0, provided free convection is negligible. 

Free convection effects diminish rapidly with increasing Reynolds number so 
that the orientation of the wire with respect to the vertical has a negligible in- 
fluence on heat transfer except at very low velocities. For horizontal wires at  
verylow Reynolds numbers, free convection is significant, when, roughly speaking, 
the Reynolds number is less than the cube root of the Grashof number. 

1. Introduction 
Heat transfer from circular cylinders by forced convection has been widely 

studied because of its engineering importance. This paper is concerned only 
with the range of variables encompassed in instruments employing heated 
cylindrical wires as sensing elements (Corrsin 1949). The most important 
application of hot-wire instruments is probably in fluid velocity and turbulence 
measurements. Unfortunately, the many advantages of the hot-wire anemo- 
meter in such work are somewhat offset by large uncertainties in the absolute 
magnitude of measured quantities. This deficiency is in part attributable to the 
use of inaccurate heat-transfer relations. The experimental investigation 
described below has yielded a new general relation governing heat-transfer by 
two-dimensional forced convection in air which should assist in improving the 
accuracy of hot-wire measurements. 

Dimensional analysis of the equations for convection of heat by an incom- 
pressible fluid (Goldstein 1938) shows that the dimensionless heat-transfer 
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coefficient, or Nusselt number N ,  is a function of the flow parameters and fluid 
properties as follows: 

where R is the Reynolds number, G the Grashof number, and cr is the Prandtl 
number. This analysis assumes that the fluid properties are independent of 
temperature and that it is a continuous medium. The former assumption is 
rarely valid, and it is customary to take account of this by introducing a para- 
meter representing the temperature loading of the heated body, e.g. TWIT, or 
T,/T,, where T denotes temperature and the suffixes W ,  00, m respectively 
signify conditions at the body aurface, in the free stream, and the arithmetic 
mean of these. In  the experiments reported here, some of the heated wires were 
sufficiently small in diameter for the effects of the molecular nature of air to be 
experienced. Molecular effects take the form of changed boundary conditions 
as compared with continuum flow-there is a jump in temperature between the 
surface of the wire and the gas adjacent to it, and the fluid slips or moves over 
the surface with a finite velocity. In  rarefied gas dynamics the ratio of mean free 
path to cylinder-diameter, i.e. the Knudsen number K ,  is recognized as the 
parameter characterizing molecular effects. Thus, for the complete specification 
of convective heat transfer from fine hot wires, a relation of the following type 

(2) 
is required: 

There is still insufficient knowledge of the subject to permit the formulation of 
such a relation, and in any case it would be too unwieldy for practical purposes. 
In  practice, free and forced convection are treated separately. As a result of 
recent investigations (e.g. Collis & Williams 1954), free convection from wires in 

(3) 
air can be specified in the form 

for Grashof numbers as small as It has been further reported (Beckers 
et al. 1956) that free convection at Grashof numbers less than about unity is 
independent of Prandtl number, so that equation (3) is valid for other fluids in 
this case. Forced convection from hot wires in air has long been specified by 
simple relations of the following type, or by its equivalent in dimensional 
variables : 

The results of the present measurements are also given in this form. The variation 
of Prandtl number of air with temperature is small and can be combined with 
other temperature loading effects. Explicit introduction of the parameter K 
has been dispensed with, because molecular effects are small enough to be treated 
as a correction to the continuum heat transfer coefficient. This correction, 
described in Appendix A, is made on the assumption that temperature jump is 
solely responsible for the observed reduction in the Nusselt number. Rough 
estimates suggest that the effect of velocity slip would lie between and of the 
jump effect in the present experiments. 

At sufficiently low Reynolds numbers, forced and free convection interact in 
a manner which has not yet been fully investigated. Ower & Johansen (1931) 
and Cooper & Linton (see Ower 1949) have described this interaction, essentially 

(1) = f (R, G, g), 

N = f (R, G, fl, K ,  TmIT,). 

N = f (G, TmIT,) 

(4) N = f (R, T,/T,). 
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in a qualitative manner. In  the particular case of horizontal wires in a hori- 
zontal air stream, sufficient data was obtained in the present series of experiments 
to permit the formulation of a criterion for the onset of significant free convection 
as the Reynolds number is decreased from values where forced convection pre- 
dominates. Further, it  has been clearly shown that at higher Reynolds numbers 
beyond this small region of interaction, the effect of free convection is quite 
negligible. This observation shows that the method of hot-wire anemometer 
calibration which involves the measurement of heat transfer at zero Reynolds 
number is erroneously based. 

Since the primary aim of this work was to establish precise heat transfer laws 
for forced convection at  low Reynolds numbers the existing information on this 
subject will now be examined in more detail. 

2. Review of data on forced convection at low Reynolds numbers 
The results of the more important forced convection investigations have been 

collected and correlated by McAdams (1954). The scatter of results is rather large, 
but a correlation between N and R, satisfactory for many engineering purposes, 
has been achieved for temperature loadings up to 1000°C by evaluating the 
thermal conductivity k and the dynamic viscosity ,u of the gas at a temperature 
halfway between the cylinder temperature and the ambient or free-stream tem- 
perature, i.e. +(Tw + Tm), and the density p at free stream temperature. In  the 
Reynolds number range 0.1 to 250,000, McAdams gives co-ordinates of a recom- 
mended mean curve, whilst for the smaller range 0.1 to 1000, he gives the equation 

N = 0*32+ 0 ~ 4 3 R @ ~ ~ .  ( 5 )  

Mean equations such as this smooth out the finer details, and therefore are 
too crude to form the basis for accurate measuring devices, particularly those 
which, like the turbulence hot wire, depend on the values of aN/aR at the 
operating point. It is probable that a single careful investigation, covering 
perhaps a more restricted range of the variables, would yield more satisfactory 
heat-transfer relations. 

Of the various sources quoted by McAdams, only two contribute extensive 
data at Reynolds numbers in the range of operation of hot-wire instruments 
(viz. R < 100)) namely King (1914) and Hilpert (1933). Hot-wire anemometry 
is almost invariably based on an empirical relation obtained by King. If a wire 
of diameter d,  placed normal to an airstream of velocity V ,  and temperature T,, 
is heated to a temperature T,, then the heat transfer coefficient H W cm-l deg-1 
as given by King's law is 

H = A[1+ y(Tw - T m ) ]  + B[ 1 + 6(T, - T m ) ]  1/( Vd),  (6) 

where A = 2.50 x lO-4(  1 + 3 5 4  with d in cm, B = 1.012 x 10-2,,/d, and the tem- 
perature coefficients when T, = 17 "C are y = 0.00114, 6 = 0*00008. 

King's experiments were performed with a whirling arm and consequently 
were subject to interference from draughts, both natural and induced. However, 
more recent investigations in wind tunnels or air jets of low turbulence level 
have been found to confirm King's law, but these investigations have generally 
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covered a very limited range of the variables, and it is doubtful whether the 
results have been examined sufficiently critically. It will be shown later, in fact, 
that King’s results involved some fairly large systematic errors, and that 
because of this the results can be interpreted as being consistent with the proposed 
new heat transfer relation which differs somewhat from equation (6).  

The work of Hilpert is exceptional in that it extends over a very wide Reynolds 
number range and exhibits a high degree of consistency throughout. Hilpert 
expressed his results in the form of a power law 

N = .[.(%):I”. ( 7 )  

where G and n are constant in specified ranges of R. The method of correlation 
in this equation differs from that of McAdams in that the gas density as well as 
the conductivity and viscosity are evaluated at the mean temperature,t 
4(Tw + Tm). Table 1 contains values of C and for the ranges of interest here. 

R C 1E 

1-4 0.891 0.330 
4-40 0.821 0.385 

40-4000 0.615 0.466 

TABLE 1 

There are two reasons which possibly account for the fact that the results 
have not been applied extensively in instrument work. First, the temperature 
factor was based on a series of measurements in which the Reynolds number 
varied only through a small range. It was therefore not shown that this factor 
retains the same form in other ranges of Reynolds number, although some 
support was derived by correlating some of King’s data at lower Reynolds 
numbers. Secondly, the series of simple power laws is probably only an approxi- 
mate representation of the data, which could lead to appreciable errors in 
deriving the local slope of the heat-transfer curve. Although the experimental 
results were published in tabular form, no alternative analysis seems to have 
been attempted, and the discontinuities in the slope of the heat-transfer curve 
which Hilpert noted at  R = 4 and R = 40, have been generally ignored in 
instrument work. The second of these irregularities obviously could arise from 
the sudden change in nature of the flow, which occurs when vortices begin to 
detach from the rear of the cylinder. The former, which was less well defined, 
might be due to the formation of standing vortices-a more gradual process. 

A theoretical solution to the forced convection problem for Reynolds numbers 
in the range of 0.1 to 100 is extremely difficult, since neither the slow viscous flow 
approach on the one hand, nor the use of boundary layer approximations on the 
other, is allowable for most of the range. The one well-known solution for forced 

t Allowance for this difference has not been made by McAdams (1954) in incorporating 
Hilpert’s results in McAdams’ figure 10-7. The required adjustment amounts to an in- 
crease of 133% in Reynolds number. A rather smaller adjustment to McAdams’ recom- 
mended curve seems indicated. 
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convection from wires, that due to King, avoids the di%culty by assuming 
potential flow. King’s solution is somewhat tedious to evaluate, but can be 
approximated closely by two equations of simpler form. Written in non- 
dimensional terms these are? 

2 
log (2el-YalRa) 

N =  ___ (Rc < 0.08), 

where yE = 0-577 ... is Euler’s constant, and 

The second equation is identical in form with King’s experimental law, except 
that i t  does not include the effect of temperature on the physical properties of 
the gas. Comparison with experimental data shows that it overestimates the 
heat transfer by up to 40 %. Apart from this, the basic assumptions of the theory 
have been held to be unsatisfactory (Goldstein 1938). The theory thus is of no 
help in assessing the relative merits of experimental results. 

A useful piece of theory (although of limited scope) is that based on the Oseen 
approximation. This is of course strictly valid only in the limit as R --f 0. Cole 
& Roshko ( 1  954) find that this approximation yields the solution 

2 8 

N Ra - = log - -YE. 

Experimental work by the same authors failed to substantiate equation (10) due, 
it was thought, to disturbance of the two-dimensional convection by three- 
dimensional effects. 

The investigation which is now described was provoked by observations that 
hot-wire anemometer calibrations made under near-ideal conditions tended to 
deviate systematically, and always in the same manner, from King’s law 
(equation (6)). The nature of these deviations was such as to indicate a somewhat 
different dependence of heat-transfer on velocity from that of equation (6). 
A modification of King’s law is proposed in this paper following careful measure- 
ments involving a wide range of air velocities, wire diameters and temperature 
loading. The existence of at least one discontinuity in the heat transfer relation 
as previously observed by Hilpert has been verified. The dependence on tem- 
perature loading was found to agree in magnitude with Hilpert’s finding rather 
than with that of King. 

3. Description of measurements 
3.1. Equipment 

Heat transfer measurements in the speed range 6-140ft./sec were made with 
electrically heated wires in a small closed-return wind-tunnel (test-section area 
104 x 133in.) of conventional design. An excellent distribution of velocity and 
a low turbulence level were obtained by using a single wire gauze screen in the 

t The specific heat at constant volume has been replaced by that a t  constant pressure, 
which seems to be more appropriate in this problem. 
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settling chamber followed by a 4 : 1 contraction of area. The longitudinal com- 
ponent of turbulence was found to be 0.08 at 50ft.lsec. Air speed was deter- 
mined from the pressure drop across the contraction, which was calibrated by 
means of a Pitot-static tube placed at the position later occupied by the heated 
wires. The temperature of the air in the tunnel was slightly sensitive to changes in 
atmospheric conditions, and also changed several degrees during runs at the 
higher speeds due to viscous dissipation. As heat-transfer measurements were 
made for temperature loadings as small as 30 "C, a check on changes in ambient 
temperature was thus essential. This was made by means of a rapid response, 
platinum thermometer placed near to, but clear of, the wake of the heated wire. 
From time to time an ambient temperature reading was obtained from the test 
wire itself. Comparison of such readings with those of the monitoring thermo- 
meter served as a check on changes in the test wire arising from strain or other 
causes. Ambient temperature varied between 10 and 25°C during the experi- 
ments. 

For measurements a t  lower air speeds, namely, from 0.08 to 1*42ft./sec, a 
cylindrical duct fitted at the intake end with a bell mouth, honeycomb and gauze 
was used. Air speed was measured by means of a Simmons' shielded anemo- 
meter (Simmons 1949), which was originally calibrated on a whirling arm at the 
National Physical Laboratory.? Flow conditions in this duct were much less 
steady than in the wind-tunnel, and velocity measurements were less accurate. 
Thus, in the experimental results presented later, there is a greater scatter 
amongst data taken at speeds less than Gft./sec. 

3.2. Wire assemblies 

In  some earlier work in this field the effect of finite wire length has been 
largely eliminated by attaching potential taps to the heated wire, so that end 
losses are not included in the measured heat transfer. This device is not practic- 
able for the finer wire used in the present work. The procedure adopted was to 
use very long wires and correct the results for the small residual transmission of 
heat to the supports by the method given by Simmons & Beavan (1934). The 
maximum correction necessary was 3.6 yo. 

The heavier gauges of wire were mounted by soldering them between slender 
steel prongs as in figure 1 (a).  Tension was applied subsequently by a screw 
adjustment. The finest gauge wires which were prepared from Wollaston wire 
could not be mounted under tension without risk of breakage by vibration. An 
arrangement in which tension is maintained by air-drag was therefore used. An 
assembly of this type is shown in figure 1 (b) .  The Wollaston wire is soldered in 
a slack loop trailing downstream of the prongs. The silver layer is then etched from 
the centre of the loop and the platinum is straightened by manipulation of the 
remaining silver supports. At the maximum speed at which the finest wire was 
used, namely, 100 ft./sec, the platinum was deformed into a catenary with the 
tangent at either end inclined at about 5' to the normal to the air stream. This 
deformation would have a negligible effect on the rate of heat transfer. 

t In using the Simmons' anemometer as a transfer device, no assumption about the 
heat transfer law applicable to this instrument is involved. 
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(a) 0.00535 and 0oo090 cm diameter wires 

( b )  0000295 cm diameter wire 

FIGURE 1. Wire support geometry. 

3.3. Properties of the heated wires 

Wires of nominally pure platinum were employed for all of the measurements. 
The dimensions of each wire and the temperature coefficient of electrical resist- 
ance of the material are given in table 2. An optical interference method was used 
to determine the diameters of the finer specimens of wire whilst a similar tech- 
nique combinedwith theuse of slip gaugeswas usedfor the thickest wire. Accuracy 
of the two methods was about 2 and 1 yo, respectively. A travelling micro- 
scope was used for the length measurements. The temperature coefficients of 
resistance were measured over the interval 0-lOO"C, using melting ice and 
steam baths. The variation of this coefficient is indicative of impurities in the 
platinum. 

The length of each specimen was made as great as practicable to minimize 
both the metallic conduction heat transfer and other three-dimensional effects. 
Free convection measurements (Collis & Williams 1954) have shown that all 
end effects (including metallic conduction) are small for 2/d 2 20,000: even at  



364 

very small values of the Nusselt number. As the Nusselt number increases the 
hot air film diminishes in thickness, and rough calculations based on the Langmuir 
concept of a concentric cylindrical film suggested that Zld > 1000 would be 
adequate for these experiments. However, the concentric film concept is not 
valid for forced convection, so that in the absence of a more reliable guide a 
large margin of safety in the aspect ratio was considered desirable. The most 
critical condition occurred with the finest gauge wire a t  the lowest velocities. 
The specimen with Z/d = 5370 was therefore used for all measurements at  speeds 
less than 6ft./sec. At higher speeds most of the measurements were made with 
a shorter, and therefore stronger specimen in order to minimize errors arising 
from strain and permanent deformation of the wire. 

D. C. Collis and M .  J .  Williams 

Diameter d Length 1 Aspect ratio Temp. coeff. 
(cm) (cm) Ild of resistance 

0.000295 0.872 2950 0.00370 
0.000295 1.585 5370 0.00370 
0~00090 7.80 8660 0.00380 

0.00342 0.00535 11.10 2070 

TABLE 2 

3.4. Measurement of heat-transfer coeficients 

The wires under test were heated electrically and the power dissipated in the 
wire was computed from measurements of the heating current and wire resist- 
ance. The heat lost by convection is equated to the electrical power dissipation, 
less losses to the supporting wires. The temperature loading was determined by 
using the test wire as an electrical resistance thermometer. Temperatures on the 
International Temperature Scale were obtained by first calculating temperatures 
on the platinum scale using the measured temperature coefficients and then 
applying a correction by the Callendar method (Kaye & Laby 1948), assuming the 
difference coefficient 6 = 1.5. Resistance of the wire at  ambient temperature 
was determined by extrapolating to zero power dissipation. Ambient tem- 
perature was measured on a mercury thermometer prior to a run and 
corrected for rapid changes by reference to the platinum thermometer referred 
to in $3.1.  

Radiation losses were computed and found to be negligible throughout. 

3.5. Eddy shedding observations 

A hot wire anemometer was mounted in the wake of an unheated wire, of 
0.00535 cm diameter, and a turbulence amplifier with a useful frequency range 
up to about 70 kilocycles per second was used to detect eddies shed from the 
upstream wire. Turbulence level and scale were varied by inserting square-mesh 
wire grids into the working section upstream of the wires. Determinations of 
the Reynolds number at which eddy shedding commenced was made for a range 
of turbulence conditions. 
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4. Results 

airstream normal to the wire. The effect of orientation is considered in 0 4.5. 
The results discussed in $3 4.1 to 4.4 refer to horizontal wires in a horizontal 

4.1. Method of correlation 

When formulating empirical relationships it is customary to attempt to 
remove explicit dependence of the Nusselt number on temperature loading by 
evaluating the physical properties of the fluid at some suitable temperature. 
Choosing this temperature on the grounds of physical significance does not 
always lead to a unique simple relationship between the variables. Here, the 
system used by Hilpert has been followed (except where otherwise stated) as it 
leads to a compact expression of the results in the Reynolds number range con- 
cerned. Thus, the fluid properties-thermal conductivity, density and viscosity 
-are evaluated at a temperature which is the arithmetic mean of the free stream 
(or ambient) and cylinder temperatures. This system, it will be recalled, differs 
from that used by McAdams, who evaluated density a t  the free stream tem- 
perature. 

Values of the thermal conductivity of air were computed from a formula 
given by Kannuluik & Carman (1951) which, for thermal conductivity in 
electrical units, is 

kt = 2-41 x 1 O - y  1 + 0.00317t - 0.0000021t2), (11)  

where kl W cm-l deg.-l is the thermal conductivity at temperature t "C. The 
ratio of viscosity to density of air, i.e. the kinematic viscosity pip, was obtained 
from tables in Goldstein (1938). 

4.2.  Correlation of forced Convection data 

The range of Knudsen number K ,  involved in these measurements is too small 
to attempt an accurate evaluation of the effect of temperature jump on heat 
transfer. However, in order to reduce all of the data to comparable conditions 
a correction was applied to reduce the measured heat-transfer coefficients to 
continuum values. Figure 2 has been drawn to exhibit the magnitude of the 
correction necessitated by temperature jump. A low-temperature loading was 
chosen for this illustration to avoid complications arising from temperature 
dependence of the fluid properties. The derivation of a correction for temperature 
jump based on kinetic theory is given in Appendix A. It is assumed that the mea- 
sured rate of heat transfer is that which would occur in a continuum under the 
temperature difference which exists in the gas outside the region of discontinuity. 
The continuum Nusselt number Nc is then related approximately to the apparent 
or measured value N, in the following way for low temperature loadings: 

- 2K. 
1 1  - 

N M  N C  

For high-temperature loadings, allowance must be made for the temperature 
dependence of mean free path and thermal conductivity as shown in Appendix A. 
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Applying the correction enables all data pertaining solely to forced convection 
to be consolidated into a single curve for each temperature loading. This is 
demonstrated on a logarithmic scale for a low- and a high-temperature loading 
by means of figure 3. The series of points which diverge sharply from the upper 
forced convection curve a t  low Reynolds numbers are associated with heat 
transfer due to mixed free and forced convection. The conditions under which 
free convection becomes important are discussed in a later paragraph. The 

3 

2/R 

FIUURE 2. Effect of temperature jump on heat transfer. 

evaluation of fluid properties at  the arithmetic mean temperature T, clearly does 
not entirely eliminate the temperature loading TWITw or T,/Tw as a necessary 
parameter. Nevertheless, the residual effect of temperature loading is small and 
is essentially independent of Reynolds number. The effect amounts to roughly 
7 % increase in Nusselt number for an increase in temperature difference from 
30 to 320 "C. Thus, for the range of variables covered in this work, the dimension- 
less heat-transfer coefficient, temperature loading and mass flow can be corre- 
lated by an equation of the form 
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where g and f are functions to be determined. A satisfactory form for the tem- 
perature function is 

It should be noted that this function is somewhat dependent on the values chosen 
for the thermal conductivity, and various sources differ somewhat in their values 
at elevated temperatures. In  figure 4 the effectiveness of relations (13) and (14) 
in condensing the whole body of forced convection data into a single curve is 
demonstrated. 

log,, R 

FIGURE 3. Variation of continuum Nusselt number with Reynolds 
number showing residual effect of temperature loading. 

log,, R 
FIGURE 4. Nusselt number uniquely correlated with Reynolds 

number and temperature loading. 
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The next step is to find a convenient analytical approximation to the flow 
function f ( R ) .  Since it is usually accepted that the data conform to King’s 
equation (with modified constants), it  will be instructive to make the comparison, 
remembering that the investigation was undertaken because of suspected 
departures from King’s law. Figure 5 shows clearly that the supposed linear 

FIGURE 5. Demonstration of the inadequacy of the heat 
transfer relation N = A -t B JR. 

relation between N and JR is no more than a rough approximation at Reynolds 
numbers less than about 44. Thus, the constants of King’s law as determined by 
experiment must be somewhat arbitrary, because of the latitude available in 
approximating the curves of figure 5 by straight lines. In  particular the slope 
of such lines is very variable, which explains a great deal of the inconsistency 
common in turbulence measurements by hot wire. At Reynolds numbers greater 
than 44 or thereabouts, eddies are shed from the rear of the cylinder. The change 
in the velocity distribution, which occurs abruptly, gives rise to the marked 
change of slope of the heat-loss curves which can be seen in figure 5 ,  a t  about 
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,/R = 6-6. The function f ( R )  thus has some sort of discontinuity at  this critical 
Reynolds number. By trial and error it was found that the experimental data 
were in good agreement with the equation 

T -0.17 

N ( e )  = A + B R n  

if the constants A ,  B, n have the values given in table 3 in the Reynolds number 
ranges prescribed there. Most of the data shown in figure 4 are replotted in 
figure 6, showing how the 0.45 power law is satisfied in the range specified in 
table 3. The change following the onset of eddy shedding is clearly defined. At 

0 7  
7 

0 6  
6 

02 
3 

2 0 4  
7 4  

5 
hE 

t) 

- 
0 3  
3 

0 2  
2 

0 1  
1 

0 

Buoyancy 

T T  76 

8" 
C 0 6  0s 1 .o 

6 8 10 
R0'45 

FIGURE 6 .  Heat transfer data correlated by 0.45 power law 
in the range 0.02 < R < 44. 

24 Fluid Mech. 6 
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R = 0.02, equation (15), with appropriate constants, overestimates the Nusselt 
number by 2 or 3 yo and the error increases rapidly if Ghe same relation is used at 
smaller Reynolds numbers. 

0 * 0 2 < R < 4 4  4 4 < R < 1 4 0  
?a 0.45 0.51 
A 0-24 0 
B 0.66 0.48 

TABLE 3 

4.3. Forced convection at very low Reynolds numbers 

The theoretical solution for two-dimensional forced convection from cylinders 
obtained by Cole & Roshko (1954) using the Oseen method, is believed to be 
correct in the limit as R -+ 0, and should not be greatly in error for R 4 1.  
A comparison of the experimental results at low Reynolds numbers, with the 
Oseen solution, thus provides a check on the general soundness of the measure- 
ments and in particular of their approach to two-dimensionality . This comparison 
is made in figure 7 for large and small temperature loadings. The straight (broken) 
line represents the Oseen solution (equation (10)). Some data depart noticeably 

log,, €2 

FIGURE 7. Comparison with Oseen solution. 

from the forced convection curve because of buoyancy effects, but the smooth 
curve through the bulk of the points asymptotes to the Oseen solution as R -+ 0. 
This curve deviates from the theoretical one by about 5 yo at R = 0.01, and 
diverges steadily as the Reynolds number increases, as would be expected. The 
discrepancy is thus too great for the Oseen solution to have much value as a 
working rule for forced convection at low Reynolds numbers. However, a relation 
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of similar form can be used to describe the experimental results for R < 0.5 
with an error less than the experimental scatter: 

This equation agrees with equation (15) to within 2 yo in the range 0.02 < R < 0.5, 
and is in better agreement with experiment at R < 0.02 than is equation (15). 
Equation (1 6) will almost certainly be a good approximation for two-dimensional 
heat transfer a t  any lower Reynolds numbers which are attainable under con- 
tinuum conditions (or nearly such) and in the absence of significant buoyancy 
effects . 

4.4. Mixed free and forced convection 

As we have noted, certain series of points diverge quite sharply from the 
forced convection curve near the lower end of the Reynolds number range. This 
divergence occurs because the components of velocity, induced in the heated 

0 

0 

Forced convection 

01 0 2  0 3  04 
d R M c  

FIGURE 8. Interaction of free and forced convection. 

1 1 I I 
01 0 2  0 3  04 

d R M c  

FIGURE 8. Interaction of free and forced convection. 

5 

24-2 
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fluid adjacent to the cylinder by buoyancy forces, become comparable in magni- 
tude with components of the forced draught. Figures 3,4, 6 and 7 show that the 
points of divergence depend markedly on cylinder diameter. By plotting the 
very low Reynolds number data on an enlarged scale as in figure 8, a temperature 
dependence is also observed. In  this figure the method of correlation has been 
modified to the extent that the gas density embodied in the Reynolds number is 
evaluated at ambient temperature after the practice of McAdams (1954). This 
allows the temperature function of equation (15) to be discarded for the particular 

n 
~ogm G, 

FIGURE 9. Criterion for onset of buoyancy effect. 

small range of Reynolds numbers involved-a fact which will prove convenient 
presently (Appendix B). The data pertain to one wire diameter only, but the 
buoyancy effect sets in at different Reynolds numbers for each temperature. 
It is also clearly shown that, as the Reynolds number is further reduced, the 
heat-transfer rate passes through a shallow minimum before reaching the free 
convection value a t  zero Reynolds number. This curious phenomenon was 
apparently first observed by Ower & Johansen (1931) and later confirmed by 
others. However, except for special cases, the conditions governing the occur- 
rence of mixed free and forced convection do not appear to have been quanti- 
tatively determined. Some information on this question can now be derived. 

Since free convection and forced convection in a particular fluid (a = const.) 
depend primarily on the Grashof and Reynolds numbers, respectively, a criterion 
for mixed flow involving only these two parameters should exist. This is con- 
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sistent qualitatively with the observed dependence on diameter and temperature. 
As a characteristic point of the mixed flow rbgime, we have chosen the condition 
for which the Nusselt number of mixed convection equals that for pure free con- 
vection at the same Grashof number. This point has the practical significance 
that it defines the lowest Reynolds number at which the hot wire in question can 
be used as an anemometer without ambiguity. Furthermore, the trend of the 
data with increasing Reynolds numbers indicates that the effect of buoyancy 
on the forced convection rapidly becomes negligible. In  figure 9, the values of 
Reynolds and Grashof numbers, associated with these points of equal Nusselt 
number, have been plotted. Points pertaining to the finest wire could only be 
obtained by extrapolation. Giving less weight to these points, the conclusion 
was reached that buoyancy effects are small provided? 

R, > Gk. (17) 

The suffixes denote evaluation of the fluid properties a t  ambient temperature, 
but the conclusion, being very approximate, is not sensitive to the temperature 
dependence of these properties. 

Another criterion based on a greater volume of data is obtained in Appendix B, 
and is probably more accurate for a limited range of Reynolds number. It is 
derived by assuming that there is no deviation from the pure forced convection 
relation (equation (16)) due to buoyancy effect until the Nusselt number reaches 
that due to free convection alone. The details of this analysis are given in 
Appendix B. The criterion derived for Reynolds numbers less than about 0.1 
is that 

€2, = 1*85#%39 

The straight line corresponding to zero temperature loading (Tm/Tm = 1) is 
shown in figure 9. The overall trend of the experimental points is followed, but 
in general the Reynolds number predicted is too high for a given Grashof number 
because of the assumption of no-deviation from the forced convection relation 
(1 6). The groups of points belonging to two of the three wires show additional 
dependence on temperature in good agreement with equation (1  8). Apart from 
the numerical factor it seems that equation (18) provides a fair criterion for the 
onset of buoyancy effects. In  particular, it  follows that 

where Vmin is the lowest velocity which can be measured without ambiguity by 
a hot wire of large aspect ratio. It is interesting to note that the lower limit of 
usefulness of the hot wire is very little dependent on diameter. This discussion 
applies, of course, only to wires of large aspect ratio, where the heat flow is two- 
dimensional. For sufficiently small aspect-ratio wires three-dimensional heat 

-f It has recently been pointed out by Dr J. J. Mahony that this conclusion could be 
derived by the method of Appendix B if the heat transfer relations used are the Oseen 
solution (10) and Mahony’s asymptotic formula for free convection at very low Grashof 
numbers (Mahony 1956). 
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transfer may modify the heat flux a t  Reynolds numbers higher than those 
defined by equation (18). 

Since the preceding discussion is based on that segment of the experimental 
results for which errors were greatest, the quantitative aspects should be 
regarded as being essentially exploratory in nature, and the results treated with 
appropriate reserve. 

4.5. Effect of orientation 

The orientation with respect to the vertical, of the hot wire and of the plane 
of the airstream, is important in free convection and consequently has a bearing 
on the interaction of free and forced convection. As already stated, the preceding 
discussion ($9 4.1 to 4.4) refers only to horizontal wires in a horizontal stream. 
It has been shown (Collis & Williams 1954) that in free convection two-dimen- 
sional heat transfer from vertical wires at very low Grashof numbers ( < 
is not attained even for aspect ratios as large as 20,000. It is certain therefore 
that the aspect ratio would be significant in the case of mixed free and forced 
convection from vertical wires, for all practical values of the aspect ratio. The 
limited accuracy of the equipment available for very low Reynolds number 
observations did not justify a detailed study of this complicated phenomenon. 
However, it  has been demonstrated previously (Ower 1949; Simmons 1949) that 
the region of interaction between buoyancy effects and forced convection extends 
over a much smaller velocity range for vertical wires than it does for horizontal 
wires. It may therefore be predicted that the forced convection heat-transfer 
coefficients for vertical and horizontal wires will not differ sensibly for all 
Reynolds numbers substantially greater than the value defined by equation (18). 
Some measurements which bear out this conclusion have been published by 
Simmons (1949), and further evidence is presented in figure 10 of this paper. 
Heat transfer measurements from a single wire of large aspect ratio (l /d = 5400) 
were made for both horizontal and vertical orientations. No significant difference 
was found within the Reynolds number range (about 0.25 to 4) which was 
covered. A systematic discrepancy between the two orientations, rising to 
18 yo at the highest Reynolds number is discernible, but is within the limit of 
reproducibility imposed by changes in the wire due to strain and annealing. The 
effect of orienting the airstream in other than a horizontal plane has not been 
examined a t  all. It is clear that with a vertical stream the mechanism of the 
interaction between free and forced convection will differ from that occurring in 
a horizontal stream, since buoyancy forces will be acting in a line parallel to the 
free stream instead of normal to it. The ambiguity in Nusselt number is unlikely 
to be present in the case of an upward directed stream, but will undoubtedly 
exist for a stream directed downwards. 

4.6. Effect of turbulence 

In  the low-turbulence airstream of the wind-tunnel the onset of periodic vortex 
shedding was just detectable at R = 46. A small increase in Reynolds number 
(about 5 yo) caused the intensity of the velocity fluctuation to rise sharply to a 
level which remained roughly constant as the Reynolds number was further 
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increased. The kink in the heat transfer curve was estimated to occur a t  R = 44, 
which agrees well with the start of eddy shedding. 

Square-mesh turbulence grids of mesh size +, Q and g i n .  were placed in turn 
across the stream loin. ahead of the 0.002 in. (0.00535 cm) wire. The turbulence 
level was thus increased in steps (Batchelor & Townsend 1948) whilst main- 
taining the scale of small eddies (the microscale A)  about the same. Observations 
of the vortex street became steadily more difficult but vortex shedding still 

RQ46 

FIGURE 10. Effect of orientation on heat transfer. 

commenced close to R = 46. The frequency of vortex shedding became increas- 
ingly uncertain, due apparently to frequency modulation arising from the 
fluctuating stream velocity, and to lateral displacements of the wake as a whole. 
However, no significant change in the Strouhal number was observed. Since 
the maximum effect of turbulence on the detachment of the vortex layer from 
the cylinder might be expected to occur with high intensity and small scale 
turbulence, the gin. mesh was installed a distance of 20 mesh lengths upstream. 
Again no significant effect was observed. 

It is perhaps of some interest to note that the vortex shedding frequency in 
these observations varied from 27 to 68 kilocycles per second. 
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5. Further discussion and comparison with earlier work 
The experiments were designed to provide information pertaining to two- 

dimensional heat transfer. The results show that the effect of aspect ratio is 
certainly small, since agreement within the limits of error is obtained between 
wires of aspect ratio varying from 2070 to 8660. Again, the agreement with the 
Oseen solution for two-dimensional convection at  very low Reynolds numbers 
(9 4.3) is indicative that three-dimensional effects are small even at the lowest 
Reynolds numbers involved, although this situation cannot, of course, continue 
to indefinitely small Reynolds numbers. 

A comparison with representative results taken from King (1914) and Hilpert 
(1  933) is made in figure 11.  The first impression is of haphazard scatter, but closer 

FIGURE 11. Comparison with previous forced convection investigations. 

study shows that the differences between results are very largely systematic. 
Hilpert’s work shows a high degree of self-consistency, and while exhibiting 
similar trends to the authors’ curve the mean slope of a curve fitted to Hilpert’s 
results would be somewhat less. Thus, while there is good agreement in values of 
N in the vicinity of R = 100, Hilpert’s heat transfer is some 8 yo greater at R = 2,  
and at high values of R Hilpert’s curve falls below the authors’ extrapolated 
curve. The change of slope of the N - R relationship due to establishment of a 
vortex street is discernible at about the same point (R + 40) as the bend in the 
authors’ curve. The latter does not exhibit a gradual bend at  R = 4 as found by 
Hilpert, but the occurrence of this bend was deduced from an insubstantial 
number of data. Where the vortex street exists, the plot of Hilpert’s results 
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shows an irregularity involving at  least one point of inflexion in the range 
40 < R < 500 which is not reflected in his constants of table 1. Unfortunately, 
the authors’ results are too sparse in this range to clarify the matter. The correct 
relation for this range therefore remains in some doubt. Hilpert’s data below the 
eddy-shedding Reynolds numbers conform well to a law involving the 0.45 power 
of the Reynolds number as shown in figure 12. However, the constants differ 
from those given in tabIe 3, for equation (15), particularly the constant. A .  

3 

R0’46 

FIGURE 12. Comparison of Hilpert’s data with equation (15); R < 44. 

The data taken from King and plotted in figure 11 represent results for the 
lightest and heaviest wire gauges used by that author, two moderate temperature 
loadings being selected in each case. Near R = 1, heat transfer from the thicker 
wire is undoubtedly augmented slightly by the effect of buoyancy (see $4.4). 
Apart from this it is remarkable that each series of points (of given diameter and 
temperature loading) is spaced a constant distance in the ordinate direction from 
each other and from the authors’ curve. These discrepancies are evidently due 
to some deficiency in the measurement of the heat-transfer coefficient rather than 
of the Reynolds number. Regardless of the precise nature of this deficiency, it 
may be concluded that King’s heat-transfer coefficients show the same form of 
dependence on the Reynolds number in the range 0.1 < R < 40 as the work 
described here. 



378 D. C. Collis and M .  J .  Williams 

With regard to the effect of temperature loading, the authors’ results con- 
stitute the only extensive body of consistent data available. The development 
of a method of correlating the heat-transfer coefficient with temperature loading 
was described in 0 4.2 (equations (13), (14)). The method satisfactorily accounts 
for the few measurements taken by Hilpert a t  temperatures other than 100 “C. 
This can be seen from figure 11 where representative points at temperature 
loadings up to 1024 “C are included. The effectiveness of equations (13) and (14) 
in dealing with King’s results cannot be determined due to the uncertainties in 
those results. King’s own analysis showed deviations of the temperature coeffi- 
cients y and S of equation (6) of up to 50 % from their mean value. For R < 44, 
equation (15) can be reduced to a dimensional form equivalent to King’s equa- 
tion (6), viz. 

where A’ and B‘ embody physical properties of the fluid and T, = 290 O R .  No 
significance attaches to differences between the values of A‘ and B’ and the 
constants A and B of King’s equation because of the changed power of Vd in 
the second term, but it is of interest to compare the representative values of y 
and 6. The authors’ values given in table 4 together with those of King are 
calculated assuming the following variation of conductivity and viscosity with 

H = A’[l+y(T,-T,)]+B’[l +S(TW-T!)] (Vd)0.45, ( 20) 

temperature : 0.80 

The larger values found here have some significance in practical hot wire anemo- 
metry, as discussed by Collis (1956). 

Y 6 

King 0.00114 0.00008 
Collis & Williams 0.00164 0.00025 

TABLE 4 

In  the lower end of the Reynolds number range (R of order l), comparison must 
be made with the work of Cole & Roshko (1954). Reference has already been 
made to the fact that good agreement has been found with the Oseen solution 
(equation (10)) obtained by these authors. Cole & Roshko did not find such 
agreement, but their experimental accuracy may have suffered greatly through 
use of nominal values of wire diameter and of temperature coefficient of resist- 
ance. Again, although very fine wires involving f iudsen  numbers of up to Q were 
used, no account was taken of ‘rarefaction’ effects. According to equation (12) 
these might exceed 30 % of the measured heat transfer coefficient. In view of 
this, a direct comparison with the authors’ results is not possible. 

Some interesting indirect evidence consistent with the 0.45 power of R or V 
in equations (15) and (20)) respectively, is found in measurements by Newman 
(1951) of the sensitivity of hot wire anemometers to yaw. It was originally 
accepted that a hot wire responded to the normal component of velocity V sin $, 
where $ is the angle of yaw, so that according to equation (6) the heat-transfer 
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coefficient varied linearly with ,/( V sin +). Newman reached the conclusion, 
however, that the wire responded to Vi(sin 9+)0.457. In  the light of equation (20) 
and a close examination of Newman’s data, it seems probable that the wire 
actually responds to the 0.45 power of the normal component of velocity, i.e. 
( V sin +)045. 

Conclusions 
1.  Based on experiments in the Reynolds number range 0.01 to 140, a new 

relation for two-dimensional forced convection from cylinders normal to an 
airstream has been established. The law has the form 

T -0.17 

N ( E )  = A + B P ,  

where the values of n, A ,  B depend on whether the Reynolds number is above or 
below the value for which a vortex street exists in the wake of the cylinder (see 
table 3). Fluid properties k, p and p used in computing N and R are evaluated at  
mean film temperature T,, and T, is in the normal range of room temperatures. 

2. The extensively used relation of King was based on measurements made 
at Reynolds numbers below this critical value. In  that region the new relation 
differs from King’s in that the Reynolds number enters to the 0.45 power rather 
than the 0.5 power, and the effect of temperature loading is found to be signi- 
ficantly larger. These differences, particularly the former, appear to arise mainly 
in the analysis of the results rather than in the measurements themselves. 

3. Hilpert’s measurements at low Reynolds numbers (R < 44) are satisfied 
by equation (15), except for the value of the constant A .  Hilpert’s temperature 
function differs in form from that in equation (15), but no data available are 
sufficiently accurate to discriminate between them. For R > 44, there is a dis- 
crepancy between Hilpert’s results and those of the authors which cannot be 
resolved without further ,investigation. 

4. The theoretical heat transfer relation based on the Oseen approximation 
(equation (10)) is approached asymptotically as R -+ 0, provided free-convection 
or aspect-ratio effects do not intervene. A relation of similar form (equation (16)) 
satisfactorily describes two-dimensional forced convection for R < 0.5. 

5. Free convection effects die out quickly with increasing Reynolds number 
(at least for horizontal airstreams), so that except at  very low velocities, the 
orientation of the wire with respect to the vertical has negligible influence on 
the heat transfer coefficient. 

6. A rough criterion for the onset of buoyancy effects has been derived for 
horizontal wires (equation ( 18)). This gives quantitative expression to earlier 
observations that the minimum speed V,, which can be measured with a hot- 
wire anemometer increases with temperature loading, and also shows that Vmin 
varies only as the $-power of the wire diameter. 

7. Molecular effects reduce the heat transfer from fine wires below the con- 
tinuum value (equation (15)) by an amount which can be estimated by assuming 
that the temperature differential is reduced by the ‘temperature jump ’ calculated 
from kinetic theory. 
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8. The intensity and scale of the turbulence in the airstream does not affect 
the Reynolds number a t  which the vortex street develops in the wake of fine 
wires. Thus the change in constants of equation (15) likewise occurs at the same 
Reynolds number (R = 44) regardless of the stream turbulence. 

D .  C. Collis and M .  J .  Williams 

The authors are indebted to the Chief Scientist, Australian Defence Scientific 
Service, Department of Supply, Melbourne, for permission to publish this paper. 

Appendix A 
Effect of temperature jump on the heat-transfer coeflicient 

It has been established (Kennard 1938) that when thermal conduction takes 
place between a rarefied gas and a bounding wall, there is a discontinuity in 
temperature at the wall. If the wall temperature is T,, and T, is what the tem- 
perature of the gas would be if the temperature gradient along the outward- 
drawn normal, aTpr, continued right up to the wall, then the discontinuity, 
or temperature jump, is given by 

aT T -T = -[--. 
ar JV s 

The constant [ has dimensions of length and is known as the temperature jump 
distance. 

Two assumptions are made in calculating the continuum value of the heat- 
transfer coefficient from the values measured in the presence of temperature 
jump: (a)  the measured rate of heat transfer is the same as would take place from 
a cylinder of the same diameter, at a temperature T,, immersed in a perfectly 
continuous gas; ( b )  the correction can be made directly to the measured value 
of the heat-transfer coefficient, which is of course an average of the local value 
taken over the circumference of the cylinder. Kennard derives an expression 
for [ in terms of the properties of the gas and the surface: 

where a is the accommodation coefficient of the surface for the particular gas, 
k is the thermal conductivity of the gas, y = c,/c, is the ratio of specific heats of 
the gas a t  constant pressure and constant volume, p is the viscosity of the gas, 
and L is the mean free path of gas molecules. Here L is defined by the relation 
,u = cpVL, in which V = 4(8RT/n), where R is the gas constant per unit mass, p is 
the densityof the gas, andc is a constant such that 0.491 < c < 0.499. Rearranging 
and putting 4c = 2, we get 

L, 
[=---  2y 1 2 - a  

y + l r  a 

where (T = ,uc,/k is the Prandtl number. 

little error, 
For air, y = 1.4 and (T = 0.72, and for platinum in air a + 0.9, so that, with 

(A 4 )  
i3T 
ar 

A0 = TSr -T ,  = -2L-.  
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If a wire is maintained a t  a temperature loading 8, = T, - T,, and q the heat 
loss per unit area is measured, then the heat-transfer coefficient h,, is calculated 
from the relation 

and on the basis of assumptions (a)  and ( b )  above it follows that the continuum 
heat-transfer coefficient h, is given by 

q = h,OW, (A 5 )  

q = h,e,. (A 6) 

Combining (A 5) and (A 6),  we obtain 

From the conduction equation, we have 

and evaluating the quantities in equation (A 4) a t  temperature T,, we also have 

By eliminating q and 3Tlar from equations (A 6) to (A 9), it can be shown that 

which may be written alternatively as 

(A 10a) 

(A l o b )  

In  figure 13, 2Llk has been plotted against T - To, using values of k and L taken 
from Kannuluik & Carman (1951) and Kennard (1938). The correct value of 
l/h,, must be obtained by successive approximation, starting with T, = !&. 

Actually the maximum correction to the present results amounted to 11 yo, 
giving a jump of about 30" at a wire temperature of 300 "C. In  this case the error 
in h, arising from evaluating 2Llk at q7' instead of T, is less than 4 yo. 

In order to determine the continuum Nusselt number Nc from h,, the thermal 
conductivity at the mean film temperature q,& = T,+&8, must be substituted 
in the expression 

In the example quoted above, the adjustment to k, arising from the diminished 
temperature loading amounts to - 3 yo, so that the continuum Nusselt number 
(calculated from (A 11)) is 13 Yo greater than the measured value. 

At low temperature loadings although the jump correction AB/B, may be large, 
the absolute temperatures T,,, T,andT, arevery nearly equal. If 2Llk isevaluated 
at T, then 

N --. 
c -  k (A 12) 

h.9 d 
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The measured Nusselt number 

D. C. Collis and M .  J .  Williams 

hwd N,, = k7 

and substituting in (A l o b )  we have the simple non-dimensional formula 

where K = L / d  = Knudsen number. 

1 I 
? 100 200 

T - T o  

FIQURE 13. Variation of 2Llk with temperature for air at atmospheric pressure. 

Appendix Criterion for the onset of buoyancy effects 

This is derived for horizontal wires on the assumption that there is no devia- 
tion from the forced convection relation for low Reynolds numbers, equation (16), 
until the Reynolds number is reduced to the point where the forced convection 
Nusselt number equals that due to free convection alone. The experimental 
results of this paper show that this is substantially true. 

In  the very low Reynolds number range where buoyancy effects are likely to 
be significant, the forced convection relation (see 5 4.3) is 

In  the range 10-10 < 0, c lo", free convection data of Collis & Williams (1954) 
have been re-examined in the light of Mahony's (1956) theoretical work. It was 
found that a semi-logarithmic relation similar to equation (B 1) fits the experi- 
mental results very satisfactorily: 

N-l = 0.88 - 0.43 loglo G,. (B 2 )  
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In  this relation the temperature loading has been eliminated by the method of 
correlation employed, previously discussed at some length by the authors (1954). 
Equating the Nusselt number in equations (B 1) and (B 2) yields a criterion of 
the type required, i.e. - 

0.17 
log R = 0.39($) log G, 1- 1.07 - 0.80 

This is not a convenient equation to deal with, but fortunately a simpler approxi- 
mate result can be obtained. In the range < R < 0.2 the temperature 
function of equation (B 1) may be omitted if McAdams's correlation (see $2)  
is used (see note below). If RM, denotes Reynolds number evaluated in the 
manner of McAdams, then in lieu of equation (B 3) we obtain the condition 

log RMc = 0.39 log C, + 0.27, (B 4) 

or Raft = 1.85 GE3'. (B 5) 
If the viscosity-temperature relation be taken as p cc 
necting R, and R,,, is 

the relation con- 

RMc = R,  brn (B 6) (3 -0-76 

Equation (B 5) can therefore be written as 

whence 

where V,, is the lowest velocity that can be measured without ambiguity by a 
hot-wire anemometer and the constant depends on the flow conditions ( p ,  p, 2''). 

Note on McAdams correlation 

A simple power law can be fitted locally to any part of the log N 05 log R curve 
by determining the local slope p .  Thus 

p ) - @ l 7  = const. x RP. 

A relation connecting R and RMc may be written a5 

and equation (B 9) may be written 

N = const. x R%, 

It can be seen that, provided p lies near 0-17, the temperature function is nearly 
annulled. 

The slope p may be determined by graphical methods or by differentiation of 
the empirical law which describes the particular range of interest. Upon differ- 
entiating (B 1) and obtaining p ,  it  is found that in the range 10-2 < R < 10-1 
McAdams system will correlate data to within 1 yo at temperatures up to 
300 "c. 
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